节水灌溉·智能控制 24小时贴心智能管家! | 农情感知 全方位农情智能感知预警! | 绿色防控·虫情测报 智能AI·保障农业安全生产! | 综合应用管理平台 智慧农业驾驶仓·慧农云管家 | 灌区信息化 精准测控·智能决策·节水增效 |
智能水肥一体化灌溉 解码器 | 无线阀控 | 闸门 恒压供水 | 过滤 智能温室 | 大棚 实时监测·智能调控·高效增收 智能温室控制系统 温室环境监测系统 温室大棚灌溉控制系统 | 农田小气候环境监测站 土壤墒情监测站 作物长势监测站 水质在线监测站 | 智能虫情测报(AI识别+计数) 智能孢子分析仪(捕捉+培养+拍照) 太阳能杀虫灯 高标准农田 | 机井灌溉 水电双计·科技助力农业水价改革 智能机井灌溉控制系统 太阳能一体化闸门(小农闸) 四情监测 | 大屏可视化管理平台 数据综合管理决策平台 农业水价改革综合管理平台 定制开发 | 灌区雨水情·量测水 灌溉信息化测控 太阳能一体化闸门 定制开发 | 贴牌OEM 你的需求,我的使命,你的满意,我的追求! 勘测现场,提供解决方案 资质齐全,提供招投标授权 OEM贴牌 | 定制开发 |
智慧农业(设施农业) 智能水肥一体化灌溉解决方案 智能温室大棚灌溉控制系统解决方案 智慧茶园建设方案 数字果园建设系统 中药材种植应用解决方案 烟草种植应用解决方案 高标准农田建设(信息化)方案 | 园林绿化 园林绿化智能灌溉系统设计方案 | 养殖业 智慧水产养殖系统解决方案 畜牧养殖系统解决方案 | 数字灌区 灌区信息化解决方案 |
Mengting Chen, Yufeng Luo
A reinforcement learning approach for irrigation decision-making is proposed and tested.
Past irrigation experiences and uncertainties of weather forecasts are intelligently learned.
The proposed method can conserve irrigation water and reduce irrigation time without yield loss.
The proposed reinforcement learning approach for irrigation is promising for smart irrigation practices.
Abstract
Improving efficiency with the use of rainfall is one of the effective ways to conserve water in agriculture. At present, weather forecasting can be used to potentially conserve irrigation water, but the risks of unnecessary irrigation and the yield loss due to the uncertainty of weather forecasts should be avoided. Thus, a deep Q-learning (DQN) irrigation decision-making strategy based on short-term weather forecasts was proposed to determine the optimal irrigation decision. The utility of the method is demonstrated for paddy rice grown in Nanchang, China. The short-term weather forecasts and observed meteorological data of the paddy rice growth period from 2012 to 2019 were collected from stations near Nanchang. Irrigation was decided for two irrigation decision-making strategies, namely, conventional irrigation (i.e., flooded irrigation commonly used by local farmers) and DQN irrigation, and their performance in water conservation was evaluated. The results showed that the daily rainfall forecasting performance was acceptable, with potential space for learning and exploitation. The DQN irrigation strategy had strong generalization ability after training and can be used to make irrigation decisions using weather forecasts. In our case, simulation results indicated that compared with conventional irrigation decisions, DQN irrigation took advantage of water conservation from unnecessary irrigation, resulting in irrigation water savings of 23 mm and reducing drainage by 21 mm and irrigation timing by 1.0 times on average, without significant yield reduction. The DQN irrigation strategy of learning from past irrigation experiences and the uncertainties in weather forecasts avoided the risks of imperfect weather forecasting.
文章来源:http://irripro.com.cn/
2025-05-08
2025-05-07
2025-05-07
2025-05-07
2025-05-06
2025-05-06
2025-05-06
2025-04-14
2025-04-14
2025-04-09
2025-04-09
2025-04-09
2025-04-07
2025-04-07
2025-04-07
2025-04-07
2025-04-01
2025-04-01
2025-04-01
2025-03-31
农业物联网
武汉睿农科技有限公司
洪经理:186 2715 5885
杨经理:136 5720 4253
业务范围:节水灌溉、智能阀门、四情监测、温室智能控制
灌区信息化、OEM定制
地址:武汉市江夏区藏龙岛科技园恒瑞创智天地6B-401
智慧农业 水肥一体化设备 大棚智能控制系统 气象监测系统 智能灌溉系统 水肥一体机 土壤墒情站 智能阀门
内蒙古 河南 黑龙江 广东 山东 北京 广西 江苏 江西 海南 上海 重庆 贵州 浙江 天津 四川 陕西 山西 青海 宁夏辽宁 吉林 湖南 湖北 黑龙江 河北 甘肃 新疆